
Moving to
the Cloud
Exploring the API
Gateway to Success
Daniel Bryant
Head of Developer Relations

2

Table of Contents

Part 1: Moving to the Cloud: Exploring the API Gateway to Success

Part 2: Microservice Service Discovery

Part 3: Load balancing strategies in Kubernetes

Part 4: Configuring Kubernetes Ingress on AWS

Part 5: HTTP/3: Use Cases, Envoy Support, and Google’s Rollout

03

08

16

20

25

Table of Contents

3

Part 1:

Moving to the
Cloud:
Exploring the API Gateway
to Success

What is an API gateway?
An API gateway is a front door to your applications and
systems. It’s on the hot path of every user request, and
because of this, it needs to be performant, secure, and
easily configurable. The fundamentals of API gateway
technology have evolved over the past ten years, and
adopting cloud native practices and technologies like
continuous delivery, Kubernetes, and HTTP/3 adds new
dimensions that need to be supported by your chosen
implementation.

Part 1: Moving to the Cloud: Exploring the API Gateway to Success

4

Moving to the cloud through the lens
of API gateways

This article explores the benefits and challenges
of moving to the cloud through the lens of API
gateways and highlights the new practices and
technologies that you will need to embrace.

At Ambassador Labs, we’ve learned a lot about
deploying, operating, and configuring cloud native
API gateways over the past five years as our
Ambassador Edge Stack API gateway and CNCF
Emissary-ingress projects have seen wide adoption
across organizations of every size.

Part 1: Moving to the Cloud: Exploring the API Gateway to Success

Our team at Mercedes-Benz uses
Ambassador as an Ingress for all HTTP
communications from 12 million cars in
production. We see about a billion hits
per day, serving 14 million requests at its
peak through Ambassador in a five-minute
interval through all our regions combined.
Mercedes-Benz collects roughly nine
terabytes of traffic from requests in a day.”

Nashon Steffen
Staff Infrastructure Development Engineer

Adopting cloud native: Changes,
challenges, and choices

Adopting cloud technologies brings many benefits
but also introduces new challenges. This is true
regardless of the role in which you work. Architects
need to understand the changes imposed by the
underlying hardware and learn new infrastructure
management patterns. Developers and QA
specialists need to explore the opportunities
presented by container and cloud technologies and
also learn new abstractions for interacting with the
underlying infrastructure platforms. And platform
engineers need to build and operate a supporting
platform to enable developers to code, test, ship,
and run applications with speed and safety.

You must establish your goals for moving to the
cloud early in the process – ideally, this is the first
thing you do. Most successful organizations base
their goals on improving some or all of the DORA or
Accelerate metrics.

DORA metrics are used by DevOps teams to
measure their performance and find out whether
they are “low performers” to “elite performers.” The
four metrics used are deployment frequency (DF),
lead time for changes (LT), mean time to recovery
(MTTR), and change failure rate (CFR). You want
to maximize your deployment frequency while
minimizing the other metrics.

Gateway to speed: Establishing
abstractions, separation of concerns,
and self-service

At Ambassador Labs, we have seen a high
correlation between deployment frequency and
successful adoption of cloud native principles
and technologies. This ability to rapidly ship new
software to customers – both for feature releases
and incident resolution – adds a lot of value that can
be easily understood throughout the organization,
from the C-level to the product and engineering and
support teams.

The key to this is focusing on providing the correct
platform abstractions and embracing a self-service
mindset. Take the API gateway use case as an
example, there are two key personas involved: the
platform engineers, who want to set appropriate
guardrails to minimize incidents and maximize their
security posture, and the developers, who want
to release services and functionality rapidly and
configure API endpoints dynamically.

https://www.getambassador.io/?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/products/edge-stack/api-gateway?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/developer-control-planes/developer-control-planes-a-platform-architects-point-of-view?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/resources/rise-of-cloud-native-engineering-organizations?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/resources/rise-of-cloud-native-engineering-organizations/
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance
https://itrevolution.com/accelerate-book/

5

Cloud native API gateway

A cloud native API gateway will enable both of these
personas and associated use cases. For example,
with Ambassador Edge Stack, we embraced the
widely adopted Kubernetes Resource Model (KRM),
which enables all of the API gateway functionality
to be configured by Custom Resources and applied
to a cluster in the same manner as any Kubernetes
configuration. For example, using build pipelines or
a GitOps continuous delivery process).

We’ve gone one step further, though, and designed
our Custom Resources with the engineering best
practice of separation of concerns for platform
engineers and developers in mind.

Platform engineers can configure the core API
gateway functionality using resources like Listener,
Host, and TLSContext. They can also provide a
range of authentication and authorization options
(using OIDC, JWT, etc) and rate limiting using the
Filter resources. Independently from this – although
appropriately coupled at runtime – developers
can launch new services and APIs using the
Mapping resource. They can also augment their API
endpoints with required authn/authz policy and rate
limiting using the FilterPolicy and RateLimit custom
resources.

But don’t just take our word for it!

The Ambassador platform lets us treat HTTP and TCP routes like
any other Kubernetes object, which means CI/CD can manage them
just like deployments or services [...] Operations does not have to
get involved in setting up basics like routing, load balancing, and
so on, removing development bottlenecks for us. Our developers
get to declare just what they need, and the platform makes their
application accessible to the world as soon as it’s deployed.”

Bo Daley
Platform Engineer

Part 1: Moving to the Cloud: Exploring the API Gateway to Success

Ambassador makes it very easy for us to
manage endpoints across all our regions
worldwide and is able to seamlessly adapt
and work with every region’s 80 different
endpoints, each with varying configuration
requirements.”

Nashon Steffen
Staff Infrastructure Development Engineer

https://www.getambassador.io/products/edge-stack/api-gateway?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://cloud.google.com/blog/topics/developers-practitioners/build-platform-krm-part-1-whats-platform
https://www.getambassador.io/docs/edge-stack/latest/topics/concepts/gitops-continuous-delivery?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://en.wikipedia.org/wiki/Separation_of_concerns
https://www.getambassador.io/docs/edge-stack/latest/topics/running/listener?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/docs/edge-stack/latest/topics/running/host-crd?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/docs/edge-stack/latest/topics/running/tls?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/docs/edge-stack/2.2/topics/running/services/rate-limit-service?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/docs/edge-stack/latest/topics/using/filters?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/docs/edge-stack/latest/topics/using/intro-mappings?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/docs/edge-stack/latest/topics/using/filters?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/docs/edge-stack/latest/topics/running/services/rate-limit-service?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud

6

Gateway to the future: Becoming
cloud native is a journey

In addition to adopting a good separation of
concerns and a self-service approach, there are a
number of other factors to consider when adopting
a cloud native API gateway. The following articles in
this series explore each of these considerations in
more detail:

•	 �Service discovery: Monoliths, microservices,
and meshes

•	 Loading balancing methodologies
•	 Load balancing in the cloud
•	 Adding support for modern protocols like HTTP/3

–––

Service discovery: API gateway
and/or service mesh

When adopting a cloud native approach to service
connectivity and communication, there is often a
recurring question of which technology is preferred
for handling how microservice-based applications
interact with each other. That is, “should I start with
an API gateway or use a Service Mesh?”

When we talk about both technologies, we refer to
the end user’s experience in achieving a successful
API call within an environment. Ultimately, these
technologies can be classified as two pages of

the same book, except they differ in how they
operate individually. It is essential to understand the
underlying differences and similarities between both
technologies in software communication.

In this article, you will learn about service discovery
in microservices and also discover when you should
use an API gateway and when you should use a
service mesh.

–––

Kubernetes load balancing
methodologies

Load balancing is the process of efficiently
distributing network traffic among multiple backend
services and is a critical strategy for maximizing
scalability and availability. In Kubernetes, there are
various choices for load balancing external traffic to
pods, each with different tradeoffs.

This article offers a tour de force of various load
balancing strategies and implementations, with the
goal to help you choose how to get started and how
to evolve this as your cloud adoption grows.

–––

Cloudy with a chance of load
balancing: AWS EKS and API
gateways

We’ve helped thousands of developers get their
Kubernetes ingress controllers up and running
across different cloud providers. Amazon users have
two options for running Kubernetes: they can deploy
and self-manage Kubernetes on EC2 instances,
or they can use Amazon’s managed offering with
Amazon Elastic Kubernetes Service (EKS).

If you are using EKS Anywhere, the recommended
ingress and API gateway is Emissary-ingress.
Overall, AWS provides a powerful, customizable
platform on which to run Kubernetes. However, the
multitude of options for customization often leads
to confusion among new users and makes it difficult
for them to know when and where to optimize for
their particular use case.

After working with many customers to configure
their ingress controller successfully on AWS EC2
and Amazon EKS, we found a common set of
questions that we were asking users. We took those
questions and converted them into a series of key
decisions that we’ve presented in this article.

Part 1: Moving to the Cloud: Exploring the API Gateway to Success

https://www.getambassador.io/resources/service-discovery-microservices?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/kubernetes-learning-center/http3?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/products/edge-stack/api-gateway?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/learn/service-mesh?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/docs/emissary/latest/topics/running/load-balancer?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://blog.getambassador.io/load-balancing-strategies-in-kubernetes-l4-round-robin-l7-round-robin-ring-hash-and-more-6a5b81595d6c
https://blog.getambassador.io/load-balancing-strategies-in-kubernetes-l4-round-robin-l7-round-robin-ring-hash-and-more-6a5b81595d6c
https://anywhere.eks.amazonaws.com/docs/tasks/workload/ingress/
https://anywhere.eks.amazonaws.com/docs/tasks/workload/ingress/

7

Embracing modern protocols: To
HTTP/3 and beyond

With HTTP/3 being supported by 70%+ of browsers
(including Chrome, Firefox, and Edge), and the
official spec being finalized in June 2022, now is the
time that organizations are beginning a widespread
rollout of this protocol to gain performance and
reliability. As leaders in the implementation of the
HTTP/3 spec, Google and the Envoy Proxy teams
have been working on rolling this out for quite some
time, and they have learned many lessons.

HTTP/3 is especially beneficial for users with lossy
networks, such as cell/mobile-based apps, IoT
devices, or apps serving emerging markets. The
increased resilience through rapid reconnection
and the reduced latency from the new protocol will
benefit all types of Internet traffic, such as typical
web browsing/search, e-commerce and finance, or
the use of interactive web-based applications, all
of which can encounter packet loss of 2%+ on the
underlying networks.

This article provides details of the HTTP/3 protocol
and highlights the benefits and challenges of adding
support for this in your applications. We have also
conducted preliminary benchmark tests using the
Google Chrome web browser and Ambassador Edge
Stack 3.0 to study HTTP/3 and test it against the
previous versions of the HTTP protocol.

Adopting a cloud native API gateway:
Focus on speed, safety, and self-
service

Choosing to become cloud native is a big decision.
There are many things to consider, both from an
organizational and technical perspective. The
fundamentals of API gateway technology have
evolved over the past ten years, and adopting cloud
native practices and technologies like continuous
delivery, Kubernetes, and HTTP/3 adds new
dimensions that need to be supported by your
chosen implementation.

We recommend you focus on speed, safety, and
self-service. You want developers to be able to
move fast and out-innovate your competitors. You
also want platform engineers to provide guardrails
and security for your systems. And critically, you
don’t want your teams drowning in IT service desk
requests and ticket handoffs. Self-service is the
only way to move with speed and safety.

Part 1: Moving to the Cloud: Exploring the API Gateway to Success

https://www.getambassador.io/docs/edge-stack/latest/topics/running/http3?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://blog.getambassador.io/benchmarking-http3-performance-envoy-proxy-and-edge-stack-96c37faac832
https://blog.getambassador.io/benchmarking-http3-performance-envoy-proxy-and-edge-stack-96c37faac832
https://www.getambassador.io/learn/envoy-proxy?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/products/edge-stack/api-gateway?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://blog.getambassador.io/continuous-delivery-how-can-an-api-gateway-help-or-hinder-1ff15224ec4d
https://blog.getambassador.io/continuous-delivery-how-can-an-api-gateway-help-or-hinder-1ff15224ec4d

8

Part 2:

Microservice
Service
Discovery:
API Gateway or
Service Mesh?

When managing cloud-native connectivity and
communication, there is always a recurring question
on which technology is preferred for handling how
microservice-based applications interact with each
other. That is; “Should I start with an API gateway
or use a Service Mesh?”.

When we talk about both technologies, we refer to the end-user’s experience
in achieving a successful API call within an environment. Ultimately, these
technologies can be classified as two pages of the same book, except they
differ in how they operate individually. It is essential to understand the
underlying differences and similarities between both technologies in software
communication.

In this article, you will learn about service discovery in microservices, and also
discover when you should use a Service Mesh or API gateway.

Part 2: Microservice Service Discovery: API Gateway or Service Mesh?

9

Introduction

In a microservice architecture, for clients to
communicate with the backend, they need a
service such as a service mesh or API gateway to
relay these API requests. This technology receives
the clients’ requests and transports them to the
back end. As a result of how dynamic the ports
to these backend services get, they may change
from time to time for different reasons (nodes fail,
new nodes are added to the network etc).

The API gateway, however, doesn’t
know by itself how to identify the
particular backend service a client
requests, so it forwards the request
to another service: called service-
discovery. The API gateway asks
the service-discovery software (e.g
ZooKeeper, HashiCorp Consul, Eureka,
SkyDNS) where it can locate different
backend services according to API

requests (by sending the name).
Once the service-discovery software
provides the necessary information,
the gateway forwards the request to
that address.

Before we dive in, let’s quickly talk
about the service registry, as most of
the service discovery concepts are
based on it.

Part 2: Microservice Service Discovery: API Gateway or Service Mesh?

https://zookeeper.apache.org/
https://www.consul.io/
https://medium.com/swlh/spring-cloud-service-discovery-with-eureka-16f32068e5c7
https://www.g2.com/products/skydns/reviews

10

What is a service registry?

The service registry is a database that
holds the data structures for network
service instances. It serves as a
messaging system that transports data
for application-level communication.

Every service registers itself with the service
registry providing all details on where it can be
located; this includes host, port, node name, and
any other service-specific metadata.

In a situation where the service registry is
unavailable, connecting to the microservices might
be difficult or impossible. That’s why the service
registry is expected to be available and updated at
all times for clients to get information on network
locations.

Part 2: Microservice Service Discovery: API Gateway or Service Mesh?

11

What is service discovery?

The Microservices architecture is
made up of smaller applications that
need to communicate with each other
through REST APIs constantly.

Service discovery (otherwise known as service
location discovery) is how applications and
microservices can automatically locate &
communicate with each other. It is a fundamental
pattern in service architecture that helps track
where every microservice can be found. These
microservices register their details with the
discovery server, making it easy to communicate.

Types of service discovery

There are two types of service discovery patterns
you should know about — server-side discovery
and client-side discovery.

Let’s break them down in detail:

Part 2: Microservice Service Discovery: API Gateway or Service Mesh?

Now that we understand what service discovery
is, let’s look at what API gateway and service
mesh are, and which is preferred for your
microservice architecture.

A server-side discovery:
This discovery pattern permits client applications
to request a service via a load balancer. The load
balancer then queries the service registry before
routing the client’s request. Think of the server-side
discovery like the receptionist (load balancer) that
attends to you when you phone an organisation.
The receptionist will enquire about the details of the
person you wish to communicate with and redirect
your call to the person.

1

A client-side discovery:
With the client-side discovery, the client is
responsible for selecting network services available;
by querying the service registry. It then proceeds to
use the load balancing algorithm to select available
service instances and requests. This is similar to
how we interact with our search engines — you
search for a topic on your browser and your browser
(service registry) will search and return a list of
URLs and port numbers. As a user, you will look for
URLs that provide accurate answers to the request
you made, then select the preferred URL that meets
your demands.

2

https://www.getambassador.io/resources/service-discovery-microservices?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/learn/kubernetes-glossary/load-balancer?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud

12

What is an API gateway?

An API gateway is a management service that accepts API
requests from clients, directs the requests to the correct
backend services, aggregates the results retrieved, and
returns a synchronous response to the client.

To better understand the meaning
of an API gateway, consider an
e-commerce site where users invoke
requests to different microservices
like a shopping cart, checkout, or
user profile. Most of these requests
trigger API calls to more than one
microservice, and due to the vast
number of API calls that are made to
the backend, an API gateway acts as
a mid-layer between the clients and
the services and retrieves all product
details with a single request.

Developers can encode the API
gateway features within the
application to execute such tasks,
without having to use an API gateway.
However, that would be a tedious
task for the developers to take on.
This method also poses security risks
of exposing the API to unauthorized
access.

In essence, an API gateway help to
simplify communication management
such as API requests, routing,
composition, and balancing demands
across multiple instances of a
microservice. It can also perform
log tracing and aggregation without
disrupting how API requests are
handled.

Examples of API gateways in the
cloud native ecosystem include:
Ambassador Edge Stack, Apigee,
Amazon API Gateway, MuleSoft,
Kong, Tyk.io, Nginx, etc.

Part 2: Microservice Service Discovery: API Gateway or Service Mesh?

https://www.techtarget.com/whatis/definition/instance
https://www.getambassador.io/products/edge-stack/api-gateway?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://cloud.google.com/apigee
https://aws.amazon.com/api-gateway/
https://www.mulesoft.com/
https://konghq.com/
https://www.nginx.com/blog/deploying-nginx-plus-as-an-api-gateway-part-1/

13

What is a service mesh?

A service mesh is an infrastructure layer that handles how
internal services within an application communicate. It
adds microservice discovery, load balancing, encryption,
authentication, observability, security, and reliability
features to “cloud-native” applications making them reliable
and fast.

Fundamentally, service meshes
allow developers to create robust
enterprise applications by handling
management and communication
between multiple microservices.

It is usually implemented by providing
a proxy instance, called a sidecar
for service instances. These proxies
handle inter-service communications
and act as a point where the service
mesh features are introduced.

Returning to the e-commerce
illustration used earlier, let’s imagine
the user proceeds to check out their
order from the shopping cart. In this
case, the microservice retrieving
the shopping cart data for checkout
will need to communicate with the
microservice that holds user account
data to confirm the user’s identity.
This is where the service mesh comes

into play! It aids the communication
between these two microservices
thereby ensuring the user’s details
are confirmed correctly from the
database.

Just like API gateways, service mesh
features can also be hardcoded into
an application. However, this will be
a tedious job for the developers as
they might be required to modify
application code or configuration as
network addresses change.

Examples of service meshes in the
cloud native ecosystem include:
Linkerd, Kuma, Consul, Istio, etc.

Part 2: Microservice Service Discovery: API Gateway or Service Mesh?

https://blog.getambassador.io/load-balancing-strategies-in-kubernetes-l4-round-robin-l7-round-robin-ring-hash-and-more-6a5b81595d6c
https://blog.getambassador.io/how-to-start-your-cloud-native-kubernetes-journey-ee88585d9ff3
https://linkerd.io/
https://kuma.io/
https://www.consul.io/
https://istio.io/

14

Similarities and differences between
a service mesh and API gateway

Implementing an API gateway or a
service mesh for enterprise-level
application development is a recurring
question amongst developers.

This section of the article will help
you understand the differences and
similarities between them and help you
decide which to go with.

Similarities between an API gateway & a service mesh:

Resilience: With either or both
technologies in place, your
application can recover quickly from
difficulties or failures encountered in
your cloud-native application.

Client-side discovery: In both the
API gateway and service mesh, the
client is responsible for requesting
and selecting available network
services.

Traffic management: Without a
service mesh or API gateway in
place, the traffic from API calls
made by clients would be difficult to
manage. This will eventually delay
the request processing and response
time.

Service discovery: Both
technologies facilitate how
applications and microservices

can automatically locate and
communicate with each other.

System observability: Both
technologies can manage services
that can be accessed by clients.
They also keep logs of clients that
have accessed specific services. This
helps to track the health of each API
call made across to the microservice.

Differences between an API gateway & a Service mesh

Capabilities: API gateways serves
as an edge microservice and perform
tasks helpful to your microservice’s
business logic, like request
transformation, complex routing, or
payload handling, while the service
mesh only addresses a subset
of inter-service communication
problems.

External vs. internal
communication: A major distinction
between these technologies is their
operation. The API gateway operates
at the application level, while the
service mesh operates at the
infrastructure level. An API gateway
stands between the user and internal
applications logic, while the service
mesh stands between the internal
microservices. As discussed above,

API gateways focus on business
logic, while service mesh deals with
service-to-service communication.

Maturity: API gateways are a more
established technology. Based on
how popular this technology has
grown, there are many vendors of API
gateways. In comparison, the service
mesh is a new and nascent open
source technology with very few
vendors today.

Tooling and support: API gateways
work with almost every application
or architecture, and can work
with monolithic and microservice
applications. Service mesh is
typically designed only to work
in specific environments, such as
Kubernetes. Also, API gateways

have automated security policies,
and features that are easy to get
started with; service meshes often
have complex configurations and
processes that have a steep learning
curve.

Monitoring and observability: API
gateways can help you track the
overall health of an application by
measuring the metrics to identify
flawed APIs. Meanwhile, service
mesh metrics assist teams in
identifying issues with the various
microservices and components
that make up an application’s back
end rather than the entire program.
Service mesh helps in determining
the cause of specific application
performance issues.

Part 2: Microservice Service Discovery: API Gateway or Service Mesh?

15

Can an API gateway & service mesh
co-exist?

Both technologies have so many things in common, but
their significant difference lies in how they operate. The
API gateway is a centralized control plane that works at the
application level, managing traffic from edge level client-
to-service. The device mesh operates on the infrastructure
level, dividing application functionality into microservices &
managing internal service-to-service communication.

When combined with a service mesh, the API gateway can
operate as a mediator. This can improve delivery security
and speed, ensuring application uptime and resiliency while
ensuring your applications are easily consumable. This will, in
turn, bring additional functionality to your application stack.

–––

Simplified Kubernetes management with
Ambassador Edge Stack API Gateway

Routing traffic into your Kubernetes cluster requires modern
traffic management. And that’s why we built Ambassador
Edge Stack to contain a modern Kubernetes ingress controller
that supports a broad range of protocols, including HTTP/3,
gRPC, gRPC-Web, and TLS termination.

Ambassador Edge Stack provides traffic management
controls for resource availability. Try Ambassador Edge Stack
today or learn more about Ambassador Edge Stack.

Conclusion

API gateways and service meshes overlap in several
ways, and when these technologies are combined,
you get a great end-to-end communication
experience.

To maximize the agility of your application and
minimize the effort developers spend on managing
communications, you may need both a service
mesh and an API gateway for your application.

Part 2: Microservice Service Discovery: API Gateway or Service Mesh?

https://www.getambassador.io/docs/edge-stack/latest/tutorials/getting-started?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/products/edge-stack/api-gateway?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/products/api-gateway?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud

16

Part 3:

Load balancing
strategies in
Kubernetes:
L4 round robin, L7 round robin,
ring hash, and more

What is loading balancing in
Kubernetes?

Load balancing is the process of
efficiently distributing network traffic
among multiple backend services, and
is a critical strategy for maximizing
scalability and availability. There are a
variety of choices for load balancing
Kubernetes external traffic to Pods,
each with different tradeoffs.

Selecting a load balancing algorithm should not
be undertaken lightly, especially if you are using
application layer (L7) aware protocols like gRPC. It’s
all too easy to select an algorithm that will result in
a single web server running hot or some other form
of unbalanced load distribution.

Let’s explore these in more detail.

Part 3: Load balancing strategies in Kubernetes: L4 round robin, L7 round robin, ring hash, and more

https://www.getambassador.io/docs/edge-stack/latest/topics/running/load-balancer?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud

17

L4 Round Robin Load Balancing with
kube-proxy

In a typical Kubernetes cluster, requests that
are sent to a Kubernetes Service are routed by
a component named kube-proxy. Somewhat
confusingly, kube-proxy isn’t a proxy in the classic
sense, but a process that implements a virtual IP for
a service via iptables rules. This architecture adds
additional complexity to routing. A small amount
of latency is introduced for each request which
increases as the number of services grows.

Moreover, kube-proxy routes at Layer 4 (L4), i.e.,
TCP, which doesn’t necessarily fit well with today’s
application-centric protocols. For example, imagine
two gRPC clients connecting to your backend Pods.
In L4 load balancing, each client would be sent to
a different backend Pod using round robin load
balancing. This is true even if one client is sending 1
request per minute, while the other client is sending
100 requests per second.

So why use kube-proxy at all? In one word:
simplicity. The entire round robin load balancing
process is delegated to Kubernetes, the default
strategy. Thus, whether you’re sending a request
via Ambassador Edge Stack or via another service,
you’re going through the same load balancing
mechanism.

kube-proxy and IPVS

While kube-proxy uses iptables for routing by
default, kube-proxy can also use IPVS (IP Virtual
Server). The advantage of IPVS over iptables is
scalability: no matter how many routing rules are
required (which are directly proportional to the
number of services), IPVS runs in O(1) time. Thus,
for clusters that consist of thousands of services,
IPVS is generally a preferred option. That said,
IPVS-based routing is still L4-level routing and is
subject to the constraints listed above.

This brings us to layer 7 (L7) routing for load
balancing Kubernetes traffic, which we will discuss
next.

Part 3: Load balancing strategies in Kubernetes: L4 round robin, L7 round robin, ring hash, and more

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/docs/concepts/services-networking/service/#virtual-ips-and-service-proxies
https://kubernetes.io/docs/concepts/services-networking/service/#virtual-ips-and-service-proxies
https://jvns.ca/blog/2017/10/10/operating-a-kubernetes-network/
https://www.getambassador.io/products/edge-stack/api-gateway?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://kubernetes.io/blog/2018/07/09/ipvs-based-in-cluster-load-balancing-deep-dive/

18

L7 round robin load balancing

What if you’re using a multiplexed keep-alive
protocol like gRPC or HTTP/2, and you need a more
fair round robin algorithm? You can use an API
Gateway for Kubernetes such as Ambassador Edge
Stack, which can bypass kube-proxy altogether,
routing traffic directly to Kubernetes Pods.
Ambassador is built on Envoy Proxy, a L7 proxy,
so each gRPC request is load balanced between
available Pods.

In this approach, your load balancer will typically
use the Kubernetes EndpointsSlices API to track the
availability of Pods. In older versions of Kubernetes
the Endpoint API can be used instead. When a
request for a particular Kubernetes service is sent
to your load balancer, the load balancer round
robins the request between Pods that map to the
given service.

Ring hash

Instead of rotating requests between different
Pods, the ring hash load balancing strategy uses a
hashing algorithm to send all requests from a given
client to the same Pod. The ring hash approach is
used for both “sticky sessions” (where a cookie is
set to ensure that all requests from a client arrive
at the same Pod) and for “session affinity” (which
relies on client IP or some other piece of client
state).

The hashing approach is useful for services that
maintain per-client state (e.g., a shopping cart). By
routing the same client to the same Pod, the state
for a given client does not need to be synchronized
across Pods. Moreover, if you’re caching client data
on a given Pod, the probability of cache hits also
increases.

The tradeoff with ring hash is that it can be more
challenging to evenly distribute load between
different backend servers, since client workloads
may not be equal. In addition, the computation
cost of the hash adds some latency to requests,
particularly at scale.

Part 3: Load balancing strategies in Kubernetes: L4 round robin, L7 round robin, ring hash, and more

https://blog.getambassador.io/understanding-grpc-and-grpc-web-8a4d43f58480
https://www.getambassador.io/products/edge-stack/api-gateway/
https://www.getambassador.io/products/edge-stack/api-gateway
https://www.getambassador.io/learn/envoy-proxy?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://kubernetes.io/docs/concepts/services-networking/endpoint-slices/
https://kubernetes.io/blog/2020/09/02/scaling-kubernetes-networking-with-endpointslices/
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancers#ring-hash

19

Maglev

Like ring hash, maglev is a consistent hashing
algorithm. Originally developed by Google, maglev
was designed to be faster than the ring hash
algorithm on hash table lookups and to minimize
memory footprint. The ring hash algorithm generates
fairly large lookup tables that do not fit onto your CPU
processor cache.

For microservices, Maglev has one fairly expensive
tradeoff: generating the lookup table when a node
fails is relatively expensive. Given the transient nature
of Kubernetes Pods, this may not work. For more
details on the tradeoffs of different consistent hashing
algorithms, this article covers consistent hashing for
load balancing in detail, along with some benchmarks.

–––

Learning More

The networking implementation within Kubernetes
is more complex than it might first appear and
somewhat more limited than many engineers
understand. Matt Klein put together a very informative
blog post in 2017 that stands the test of time
“Introduction to modern network load balancing
and proxying”. This provides a great foundation for
understanding key concepts.

A series of additional posts explain why organizations
have chosen to use Layer 7 aware proxies to load
balance ingress traffic, such as Bugsnag, Geckoboard,
and Twilio.

Ambassador Edge Stack API
Gateway

Built on Envoy Proxy, Ambassador Edge Stack is
a Kuberntes native API Gateway that supports
all of the methods for load balancing Kubernetes
traffic discussed above. Visit the Ambassador
Labs website or join our Slack channel for more
information.

Part 3: Load balancing strategies in Kubernetes: L4 round robin, L7 round robin, ring hash, and more

https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Consistent_hashing
https://dgryski.medium.com/consistent-hashing-algorithmic-tradeoffs-ef6b8e2fcae8
https://blog.envoyproxy.io/introduction-to-modern-network-load-balancing-and-proxying-a57f6ff80236
https://blog.envoyproxy.io/introduction-to-modern-network-load-balancing-and-proxying-a57f6ff80236
https://www.bugsnag.com/blog/envoy
https://medium.com/geckoboard-under-the-hood/we-rolled-out-envoy-at-geckoboard-13c45b4eaddd
https://www.twilio.com/blog/2017/10/http2-issues.html
https://www.getambassador.io/docs/edge-stack/latest/tutorials/getting-started?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/docs/edge-stack/latest/tutorials/getting-started?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/docs/edge-stack/latest/topics/running/load-balancer?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/
https://datawire-oss.slack.com/ssb/redirect

20

Part 4:

Configuring
Kubernetes
Ingress on AWS?
Don’t Make
These Mistakes
Key considerations for
developers looking to configure
an ingress controller on AWS or
Amazon EKS

What is Ingress in AWS?

Kubernetes Ingress is an API resource
that allows you to manage external
or internal HTTP and HTTPS access
to Kubernetes Services running in
a cluster. AWS provide several load
balancer types that can be used in
conjunction with a Kubernetes ingress,
and these include both transport-
based layer 4 (L4) and application-
based layer 7 (L7) options.

Part 4: Configuring Kubernetes Ingress on AWS? Don’t Make These Mistakes

21

Configuring K8s Ingress in AWS

We’ve helped thousands of developers get their
Kubernetes Ingress Controllers up and running
across different cloud providers. Amazon users
have two primary options for running Kubernetes on
AWS: you can deploy and self-manage Kubernetes
on EC2 instances, or you can use Amazon’s
managed offering with Amazon Elastic Kubernetes
Service (EKS).

If you choose EKS, you can either run this within the
AWS public cloud platform, or use EKS Anywhere,
which allows you to create and operate Kubernetes
clusters on your own infrastructure, supported by
AWS. The default Ingress solution for AWS EKS is
Emissary-ingress.

Overall, AWS provides a powerful, customizable
platform on which to run Kubernetes. However, the
multitude of options for customization often leads
to confusion among new users and makes it difficult
for you to know when and where to optimize for
your particular use case.

After working with many customers to configure
their AWS Ingress Controller successfully on EC2
and Amazon EKS, we have found a common set of
questions that we were asking users. We took those
questions and converted them into a series of key
decisions that we’ve presented here.

If you’re struggling to configure Kubernetes Ingress
on AWS, here’s our recommended consideration
path.

Choose the Right Load Balancer Type

The most important choice you will make when deciding how to handle ingress
in AWS is the type of load balancer you want to use. The other major cloud
providers make this easy by not providing so many options. Configuring a “type:
LoadBalancer” Service in several other providers always gives the same L4 load
balancer.

In AWS, a “type: LoadBalancer” Service in Kubernetes can mean a classic Load
Balancer in L4 or L7 (called an Elastic Load Balancer or ELB) or a Network Load
Balancer (NLB). Additionally, users can also manually provision an Application
Load Balancer and point it at their Ingress exposed as a “type: NodePort”
Service.

Layer 4 Load Balancers: ELB & NLB

The L4 ELB and NLB are layer 4 load balancers
which route requests to your AWS Ingress Controller
at the TCP layer.

This means that they are typically very efficient but
can be limited in the types of traffic they can route
and how intelligently they are routing requests to
your Ingress Controller. For example, the L4 ELB is
widely deployed in long-live AWS deployments but
it cannot handle WebSockets connections. The NLB
is the fastest and most efficient AWS load balancer,
but it cannot load balance to multiple Kubernetes
cluster namespaces.

All L4 load balancers are limited to round robin load
balancing algorithms. They are also limited in their
ability to preserve information about the client to the
Ingress Controller.

Layer 7 Load Balancers: ELB & ALB

The L7 ELB and ALB are layer 7 load balancers which
route requests to your AWS Ingress Controller at
the “application” protocol layer. This means that
they are able to more intelligently decide how to
route requests, but are typically less efficient. For
example, the ALB can route requests based on
information sent in the request, such as the Host or
URL path.

While this is powerful, if your application is living in
Kubernetes and your load balancer is just routing
requests to your Ingress Controller, you typically
do not need this level of control over how you are
routing requests.

Another benefit of L7 load balancers is their ability
to preserve information about the client in the
X-Forwarded headers.

Part 4: Configuring Kubernetes Ingress on AWS? Don’t Make These Mistakes

https://www.getambassador.io/learn/kubernetes-ingress?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://aws.amazon.com/kubernetes/#RUN_KUBERNETES_ON_AWS
https://aws.amazon.com/kubernetes/#RUN_KUBERNETES_ON_AWS
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/eks-anywhere/
https://anywhere.eks.amazonaws.com/docs/tasks/workload/ingress/
https://anywhere.eks.amazonaws.com/docs/tasks/workload/ingress/
https://www.getambassador.io/docs/edge-stack/latest/topics/running/load-balancer
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/
https://blog.getambassador.io/load-balancing-strategies-in-kubernetes-l4-round-robin-l7-round-robin-ring-hash-and-more-6a5b81595d6c
https://blog.getambassador.io/load-balancing-strategies-in-kubernetes-l4-round-robin-l7-round-robin-ring-hash-and-more-6a5b81595d6c
https://aws.amazon.com/elasticloadbalancing/features/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For

22Part 4: Configuring Kubernetes Ingress on AWS? Don’t Make These Mistakes

Committing to an AWS Load Balancer
Type in Kubernetes

Before you determine which type of
load balancer is best for your use
case, you’ll want to consider these four
key criteria:

1 Where to terminate TLS

2 How to manage certificates

3 Where to terminate TLS

4 Where to terminate TLS

https://www.youtube.com/watch?v=ZMllirs9gls
https://www.youtube.com/watch?v=ZMllirs9gls

23

Consideration #1:

TLS Termination

TLS encryption is a common requirement for
modern web apps. Users want to be sure they are
communicating with the intended recipient without
anyone intercepting or modifying their requests.
If you want to encrypt connections you need to
terminate TLS at an entrypoint into your application.

Since AWS allows you to terminate TLS at any of
the four load balancers available, deciding where to
terminate TLS is dependent on your choice of load
balancer.

•	 �L7 load balancers are required to terminate TLS so
they can read information from the request.

•	 �L4 load balancers are able to perform SSL
passthrough, which allows your AWS Ingress
Controller to terminate TLS.

If you choose to terminate TLS at your load balancer,
your Ingress Controller will receive traffic over
clear text, which creates another trade-off: L7 load
balancers can inform your Ingress Controller of
whether the request originated encrypted by setting
“X-Forwarded-Proto” whereas L4 load balancers
cannot.

If you choose to terminate TLS at your Ingress
Controller, you can fully control and manage TLS
certificates, Server Name Indication (SNI) for
multiple host/domain name support, and also how
connections are encrypted and unencrypted.

–––

Consideration #2:

Certificate Management

How TLS certificates are managed in AWS is
dependent on where you are terminating TLS. If you
are terminating TLS at the load balancer, you can
use Amazon Certificate Manager (ACM) to manage
your TLS certificates.

If you are terminating TLS at your AWS Ingress
Controller, then your Ingress Controller is responsible
for how it manages TLS certificates. Some Ingress
Controllers, such as Ambassador Edge Stack, can
automatically manage certificates whereas others
require that you use other tools, like cert-manager,
or store and rotate certificates in Kubernetes
manually.

Part 4: Configuring Kubernetes Ingress on AWS? Don’t Make These Mistakes

https://blog.getambassador.io/getting-edgy-understanding-transport-layer-security-tls-encryption-7243450f31c8
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-Proto
https://www.getambassador.io/docs/edge-stack/latest/topics/running/tls/sni?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://aws.amazon.com/certificate-manager/
https://www.getambassador.io/products/edge-stack/api-gateway?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/docs/edge-stack/latest/topics/running/host-crd?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud#tls-settings
https://cert-manager.io/docs/

24Part 4: Configuring Kubernetes Ingress on AWS? Don’t Make These Mistakes

Consideration #3:

Cleartext Redirection

While most modern web apps want TLS encryption,
many users will still make unencrypted requests
to your application. Therefore, it is important for
your application to be able to properly handle these
unencrypted requests. So, your next decision is how
your Ingress Controller will be configured to handle
cleartext.

If you chose to terminate TLS at your AWS
Ingress Controller or at an L7 load balancer, your
Ingress Controller will be able to identify if the
request arrived over an encrypted connection or
not, and fully manage if you want to allow, deny,
or automatically redirect cleartext traffic to an
encrypted connection.

If you choose to terminate TLS at an L4 load
balancer, however, you are forced to route both
cleartext and encrypted connections.

–––

Consideration #4:

Preserving Client Information

The final consideration when choosing how to
handle ingress in AWS is if you need to preserve
information from the client. Like all of the other
decisions, this choice depends on the load balancer
you are using.

Wrapping Up: AWS Ingress Options

After helping hundreds of users configure our
Ambassador Edge Stack API Gateway to run
effectively in AWS, we became acutely aware of
how confusing this process can be.

To help developers easily configure an Ingress
Controller and get this up and running in AWS faster,
we have provided extension documentation on
“Ambassador Edge Stack with AWS”.

If you need help, please reach out and ask
questions in our community on Slack or contact the
sales engineering team.

L7 load balancers easily preserve this information
by appending to the X-Forwarded-For header. This
passes the IP address of your client to your AWS
Ingress Controller and upstream services.

L4 load balancers cannot preserve this information
in the same way. Instead, the ability to do this
requires some tradeoffs.

In AWS, there are two ways for L4 load balancers to
preserve the client IP address.

�The HAProxy Protocol gives L4 proxies
the ability to append the client IP address
by wrapping the request with additional
data. This, however, requires your Ingress
Controller expect requests set the proxy
protocol which means all requests must carry
this extra data. This is okay when all requests
go through the load balancer, but this can
present difficulties if sending requests
directly to the Ingress Controller

1

�Configuring Kubernetes to force connections
only to Nodes running your Ingress
Controller. This configures this so that
the L4 load balancer is always connecting
directly to the Ingress Controller instead of
via Kubernetes networking. However, this
causes stability issues when restarting and
upgrading your Ingress Controller, as well as
causing more uneven load balancing to your
Ingress Controller pods.

2

https://www.getambassador.io/docs/edge-stack/latest/topics/running/ambassador-with-aws?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://datawire-oss.slack.com/ssb/redirect
https://www.getambassador.io/contact-us/
https://www.getambassador.io/contact-us?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For
https://www.getambassador.io/docs/edge-stack/latest/topics/running/ambassador-with-aws?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/docs/edge-stack/latest/topics/running/ambassador-with-aws/

25

Part 5:

HTTP/3
Use Cases, Envoy Support,
and Google’s Rollout

With HTTP/3 being supported by
70%+ of browsers (including Chrome,
Firefox, and Edge), and the official
spec being finalized in June 2022,
now is the time that organizations
are beginning a widespread rollout
of this protocol to gain performance
and reliability.

As leaders in the implementation of the HTTP/3
spec, Google and the Envoy Proxy teams have been
working on rolling this out for quite some time, and
they have learned many lessons.

Part 5: HTTP/3: Use Cases, Envoy Support, and Google’s Rollout

https://www.getambassador.io/kubernetes-learning-center/http3?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud

26

Lessons Learned by Google’s Rollout
of HTTP/3

Alyssa Wilk, Senior Staff Software
Engineer at Google, recently spoke
with Daniel Bryant, Head of DevRel at
Ambassador Labs. In a wide-ranging
discussion that covered how HTTP/3
has been implemented over QUIC
and UDP, the benefits and challenges
offered by the new protocol, and the
experience of Google publicly rolling
out support for this protocol, a number
of key themes emerged:

•	 �HTTP/2 sped up HTTP/1 dramatically – but if you
lose one packet on a connection, everything gets
stalled until the packet is retransmitted.

•	 �This is a fundamental limitation of TCP, so HTTP/3
speeds up HTTP/2 even more by implementing
the protocol on top of UDP.

•	 �The two big wins in HTTP/3 are the zero roundtrip
handshake and improved congestion control. With
the former, if you have already connected to the
server previously you can bypass the three-way
TCP handshake. With the latter, if you drop a
packet, HTTP/3 will recover better and faster
than HTTP/2.

•	 �Moreover, because HTTP/3 is implemented in
userspace, you get these performance benefits
even if you haven’t updated (or can’t update) your
operating system kernel.

•	 �Because there’s on average 2% packet loss on the
Internet, HTTP/3 benefits virtually everyone.

•	 �End users who see even more benefit are those
on lossier networks (e.g., emerging markets,
mobile, IoT use cases) and those on old kernels
(e.g., Windows users at large companies that
don’t upgrade).

•	 �Adding HTTP/3 support to a proxy, ingress, or
API gateway is non-trivial (unlike HTTP/2) as
the protocol has very sophisticated congestion
control and cryptography that needs to be
implemented.

–––

Getting Started with HTTP/3
and Edge Stack

You can get started with implementing HTTP/3
with our guide, “How to Implement HTTP/3 Support
with Ambassador Edge Stack 3.0”. Using Ambas-
sador Edge Stack (the implements the Envoy Proxy
HTTP/3 support) and a simple web app deployed
into Kubernetes, you will be able to get started with
HTTP/3 in under 5 minutes.

Part 5: HTTP/3: Use Cases, Envoy Support, and Google’s Rollout

Listen to the Full
HTTP/3 Podcast
with Alyssa Wilk

https://www.linkedin.com/in/alyssa-wilk/
https://twitter.com/danielbryantuk
https://www.getambassador.io/?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://blog.getambassador.io/benchmarking-http3-performance-envoy-proxy-and-edge-stack-96c37faac832
https://blog.getambassador.io/benchmarking-http3-performance-envoy-proxy-and-edge-stack-96c37faac832
https://www.getambassador.io/products/edge-stack/api-gateway?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://blog.getambassador.io/how-to-implement-http3-support-with-ambassador-edge-stack-c57bae385a88
https://blog.getambassador.io/how-to-implement-http3-support-with-ambassador-edge-stack-c57bae385a88
https://soundcloud.com/ambassador-labs/s2e11-alyssa-wilk-on-http3-including-googles-adoption-and-benefits-and-challenges

27

Want to learn more?

Learn more via the
Kubernetes Learning Center

Learn more

Sign up for the Kubernetes
Developer Accelerator Program

Sign up

Get started with
Ambassador Edge Stack

Get started

https://www.getambassador.io/kubernetes-learning-center?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/kubernetes-development-accelerator-program?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud
https://www.getambassador.io/products/edge-stack/api-gateway?utm_source=website&utm_medium=ebook&utm_campaign=moving-to-the-cloud

https://www.getambassador.io/

