
Transforming
Developer Productivity
with Kubernetes
A guide to boost the cloud
native developer experience
for your team

2

Cloud-native, Kubernetes-based
software development changes
the game not just for developers
but also for site reliability (SRE)
and ops engineering teams.
It creates a need for closer
collaboration, changes each
of these roles, and demands
a centralized, paved path for
developers to be able to create
and run their apps.

To capitalize on the velocity cloud-native
development makes possible, SRE and ops teams
provide and support a developer experience that
includes a self-service approach to developers
taking on ownership of the full development lifecycle:
not just code but also ship and run.

In interviews with SRE and platform teams,
developers, and leaders from across industries
and types of organizations, a number of common
perspectives emerged about the new cloud-
native normal.

This “shift left” includes the importance of:

• Developer ownership and enabling
the “you build it, you run it”
approach

• Understanding the changing roles
of sre and ops teams in relation to
developers, i.E. More consultative,
fostering empowerment and
support, less firefighting

• Developer education and
organizational support for offering
hands-on education and training

• Leadership buying in to and
championing the end-to-end
“developer as service owner”
mindset to make it work across an
organization

• A paved-path platform or developer
control plane along with opinionated
workflows to reduce developer
cognitive load, get developers up
to speed faster, reduce tool sprawl,
and create ideal conditions for
shipping software faster, safely.

3

The site reliability engineer perspective
We recently spoke with Mario Loria, Senior Site Reliability Engineer
(SRE) from CartaX, an electronic marketplace for private securities. In a
wide-ranging discussion that covered ground from the changing developer
experience to the ideal role of SREs in a modern, cloud-native environment,
a number of key themes emerged:

 An organization and its leadership
needs to get behind the end-to-end
“developer as service owner” mindset
to make it work.

 Developers should own the full life
cycle of services but in most cases
don’t. Mario explained, “It should
not be up to me as an SRE to define
how your application gets deployed
or at what point it needs to be rolled
back, or at what point it needs to be
changed, or when its health check
should be modified.” Developers should
be capable of — and empowered — to
make these determinations.

 Developer education and mindset will
need to change to embrace the “you
build it, you run it” approach, with
SREs helping to shape and support
the developer-ownership mindset

with appropriate platforms providing
tools and an interactive self-service
experience instead of riding to the
rescue when things go wrong.

 In this new environment, one of the
best things SREs can do is focus on
infrastructure and core services to
support the main challenge and goal
of a developer: shipping software
safely at speed. The developer doesn’t
necessarily need to care about what
platforms and tools are used but
does need to be able to use them to,
for example, canary a service or get
service metrics.

 Site reliability engineers (SREs) play
a key role in guiding developers
through the learning curve toward

comprehensive self-service of the
supporting platforms and ecosystem,
and ultimately to service ownership.

 To hand over complete ownership
to developers, greater transparency
and visibility into what’s going on with
their services is needed. To “liberate”
developers from an overreliance
on SRE firefighting, and facilitate
developer autonomy in finding their
own solutions, a developer control
plane centralizes and ties together
the code-ship-run processes a
developer needs to understand.

Mario Loria
Senior Site Reliability Engineer (SRE)

CartaX

https://www.getambassador.io/developer-control-plane/developer-control-planes-an-experienced-sres-point-of-view/?utm_source=content&utm_medium=ebook&utm_campaign=developer-productivity&utm_content=mario-loria-sre
https://www.getambassador.io/developer-control-plane/developer-control-planes-an-experienced-sres-point-of-view/?utm_source=content&utm_medium=ebook&utm_campaign=developer-productivity&utm_content=mario-loria-sre
https://www.getambassador.io/developer-control-plane/dcp-insights-mario-loria-from-cartax/?utm_source=content&utm_medium=ebook&utm_campaign=developer-productivity

4

The platform architect’s perspective
In an extensive interview with Lunar Bank’s Lead Platform Architect, Kasper
Nissen, the discussion ranged from centralizing tooling for developers and
creating opinionated workflow, for example in the form of a developer control
plane as a way to provide a single pane of glass and reduce the complexity
of building, shipping, and running applications for developers taking on full
ownership of the lifecycle. Some of the key takeaways included:

 Shifting left and putting more
responsibility onto developers
shoulders requires organizations
to deliver education and support
to enable developer upskilling and
promote a frictionless developer
experience.

 Platform and ops teams should create
a “paved path” to reduce tools sprawl
and accelerate developer ramp-up
and productivity, which helps both
developers and the ops teams.

 Giving developers centralized tooling
and opinionated workflows (such as
developer-friendly GitOps workflows)
empowers them to take ownership of
the full code, ship, run equation and
removes the cognitive burden of trying
to learn a range of infrastructure that
has very little to do with their work.

 As a part of the shift left, a balance
of freedom and responsibility
for developers is a must. To get
developers onboard, platform and opss
teams have a responsibility to make
that move manageable. As Kasper
shared, “Platform teams can’t just put
all this responsibility onto developers
and say, ‘Go figure it out and become
experts in all these different systems.’”

 “Kubernetes is just the common
framework. It’s all the other stuff that’s
the hard part now: linking everything
together and making it work”, according
to Kasper. If Kubernetes is accepted as
a default, platform teams can focus on
the developer experience touchpoints
that are required components of rapidly
and safely shipping software.

 The fundamental aim is to set up
a self-service approach so that
developers can take a quick pulse of
the system: both the “single pane of
glass” to understand what is going
on under the hood and the “developer
control plane” to integrate these
different activities and control them
centrally.

Kasper Nissen
Lead Platform Architect

Lunar

https://www.getambassador.io/developer-control-planes/developer-control-planes-a-platform-architects-point-of-view/?utm_source=content&utm_medium=ebook&utm_campaign=developer-productivity
https://www.getambassador.io/developer-control-plane/dcp-insights-kasper-nissen-from-lunar/?utm_source=content&utm_medium=ebook&utm_campaign=developer-productivity

5

The cloud-native leadership perspective
Bjorn Freeman-Benson, the SVP of Engineering at Ambassador Labs, recently
shared his perspectives on cloud-native development and how it has evolved,
where it’s going, and how to support the changing developer experience.
Important insights included:

 Enabling the new cloud-native
paradigm requires a focus on uptime,
collaboration across roles and
departments, and SRE and ops teams
facilitating developer self-service.

 Development and operations teams can
gain the most efficiency by working
together. Complete separation of duty
means that other teams have no insight
into what the others are doing. As Bjorn
points out, developers are more likely
to have easier insight into emerging
failure patterns and problems within
their own services, while a separate
operations team would have to spend
significant time digging around to
identify what is going wrong.

 Collaboration is not the same as
duplicating effort. As Bjorn explained
SRE and ops teams’ time is better
spent building robust foundations to
automate all the things development
teams need to use but don’t need
to know inside and out. Essentially,

everyone is focused on enabling
developer self-service, which makes
everyone’s job easier and lets each
function focus on their areas of
expertise.

 In production, customers prize
uptime and availability over features.
While both are important, customer
expectations about what a service
delivers focus mostly on uptime.
Customers are considerably more
upset about outages, failures, and poor
performance than they are about a
feature that doesn’t ship. Supporting
the business model and customer
expectation, then, means shifting the
development model, making the “run”
component of “code-ship-run” balance.

 As a part of the shift left, platform
teams building tooling and automation,
paving the path for developers,
and, along with SREs, keep it clear
of obstacles. “If you’re building a
SaaS piece of software, it’s about

operations as well as writing the
software. That’s the extension we’ve
made as developers — to go from
just developing to developing and
operating. The friction of this shift
in ownership is where the developer
control plane concept was born.

 A DCP gives developers what they
need to control and configure the
entire cloud-development loop to
ship software faster, without the
distraction of trying to find and
figure out a million different tools.
The developer’s focus and creativity is
better spent on creating, shipping, and
running software that delivers value.

Bjorn
Freeman-Benson
SVP of Engineering

Ambassador Labs

https://www.getambassador.io/developer-control-plane/developer-control-planes-a-leadership-point-of-view/?utm_source=content&utm_medium=ebook&utm_campaign=developer-productivity

6

The developer’s perspective
In a chat about the developer experience, the challenges of infrastructure, and
the future of cloud-native development, former software developer at Google
and, more recently, VP Ecosystem at the Cloud Native Computing Foundation
(CNCF), Cheryl Hung, shared notable themes:

 The much-discussed shift left, which
puts more responsibility for shipping
and running software in the hands
of developers, has its upsides and
downsides. Many developers just
want to code, and companies like
Google, enable this. But this ease can
be a tradeoff: The developer never
needs to learn how it works under the
hood, which isn’t helpful if a developer
goes to work in a company that
insists on developer ownership and
autonomy. The developer is shielded
from understanding the complexity of
shipping and running their code. This
can be positive, keeping the developer
focused. At the same time, it removes
the responsibility for considerations
like provisioning resources, which
would be valuable knowledge for full-
ownership developers.

 Infrastructure is hard, complex, and
easy to get wrong. It’s important
for developers to get enough

understanding of this both to identify
problems in their code throughout the
lifecycle and to reduce strain on the
SRE teams that support them.

 Providing a centralized source of truth
creates a good developer experience,
lessening the learning curve and
providing a clarity of experience for
developers without limiting their ability
to seek out and learn platform tools
beyond that portal.

 An emerging common view among
developers, architects, and SREs
across different business types is
that more developer self-service is
better. This supports the thinking
that platform and SRE teams can best
support developers by creating the
right abstraction layer to empower
developers to do their jobs, regardless
of how much ownership they have over
the full process.

 Balancing freedom with responsibility
is central to empowering developers
to move to an ownership mindset with
the software they develop. Cheryl
mirrored these experiences: “The more
self-service you can provide from the
platform to the application developers,
the better. It saves time on both sides,
and empowers both the developer and
the platform team to focus on their
core areas.”

 Cloud-native developers can thrive
given a happy medium, that is,
by having a developer portal or
control plane, it’s possible to set a
baseline experience without tying
a developer’s hands if and when
they want to dive deeper into the
underlying infrastructure or swap
tooling.

Cheryl Hung
VP Ecosystem

Cloud Native Computing Foundation
(CNCF)

https://www.getambassador.io/developer-control-plane/developer-control-planes-a-developers-point-of-view/?utm_source=content&utm_medium=ebook&utm_campaign=developer-productivity
https://www.getambassador.io/developer-control-plane/dcp-insights-cheryl-hung/?utm_source=content&utm_medium=ebook&utm_campaign=developer-productivity

7

• Full lifecycle ownership for developers,
which supports efficiency

• Infrastructural and automation support from
SRE and operations (not just firefighting),
particularly with implementing a DCP

• Closer collaboration across teams that
makes development and release more
efficient from end to end.

Power developer ownership of the full
development life cycle with a developer control
plane, which enhances your existing technology
stack and enables collaboration among your
development teams without requiring devs
to worry about managing configuration.

Centralizing the
developer experience
Cloud-native development has forced
organizations and the people working in
it to reimagine software development.
Development teams are adopting new tools
and workflows, which has fundamentally
changed the developer experience.
The shift left has blurred lines between
developer, operations and site reliability
teams. Both the changed development
experience, platforms and tools and shifting
customer expectations make the case for:

Get started with your own developer control plane at
getambassador.io/get-started

https://www.getambassador.io/get-started/?utm_source=content&utm_medium=ebook&utm_campaign=developer-productivity

