
8 Fallacies of Testing  
Microservice Systems

End-to-end testing is the only  
way to verify functionality1

Effects: Engineers over-invest in creating end-to-end tests that 
become brittle and more costly to maintain as the software ages.

Solution: Learn about the Test Pyramid and invest in a range 
of loosely-coupled (modular) tests to support both continual 
business and technical verification.

Contract testing is too expensive  
to maintain2

Effects: Developers under-invest in creating contracts due  
to maintenance concerns, leading to unverified interactions 
within specific areas of the system.

Solution: Ensure that core APIs between system and service 
boundaries are continually verified with up-to-date contracts. 
Don’t use contract testing for every API, as this can result in 
overly-tight coupling.

Mocks, stubs, and doubles and the only 
way to simulate dependencies3

Effects: Engineers rely on custom mocks that have implicit 
assumptions encoded within them. As the systems changes,  
the assumptions may not keep pace.

Solution: In addition to mocks, use “local-to-remote” 
development tools like Telepresence to test against actual 
dependencies running in a production-like environment.

Properties of production infrastructure  
do not impact component tests 4

Effects: Running tests on a non-production-like platform  
results in poor quality verification e.g. the use of container  
and cloud technology impacts network performance  
and memory allocation.

Solution: Ensure the local dev environment is as production-like 
as possible, e.g. run local tests in containers. Run component 
tests in a production-like environment within the build pipeline.

It’s impossible to run fast and  
accurate integration tests5

Effects: Compromises are made with integration tests  
either providing a high level of confidence but running  
slow or providing low confidence but quick execution.

Solution: Prioritize accuracy with integration tests.  
For speed, use TestContainers to run databases with 
 pre-canned data, and use build pipelines to scale  
verification with shared staging environments.

Testing only takes place during  
pre-production6

Effects: Customers find bugs in production,  
and unless reported, the engineering team  
may be unaware of the issues.

Solution: Invest early in observability throughout your 
applications, API gateway, and service mesh (and  
other infrastructure). Run semantic monitoring for  
key business journeys in production.

Test data is homogenous  
and easily generated7

Effects: The use of poor quality test data leads to incorrect 
assumptions being made about functionality and performance.

Solution: Work with data and ops teams to understand  
the quantity and shape of core data. Ensure build pipeline  
tests again production-like databases.

Cross-functional tests (performance, 
security, etc) are ops responsibility8

Effects: Cross-functional requirements are either  
neglected or poorly implemented as a product  
nears the go-live stage.

Solution: Developers should be encouraged to  
“shift left” the design and implementation of  
cross-functional requirements.


